R/SHAP_funcs.R
shap.plot.summary.wrap1.Rd
shap.plot.summary.wrap1
wraps up function shap.prep
and
shap.plot.summary
shap.plot.summary.wrap1(model, X, top_n, dilute = FALSE)
model | the model |
---|---|
X | the dataset of predictors used for calculating SHAP |
top_n | how many predictors you want to show in the plot (ranked) |
dilute | being numeric or logical (TRUE/FALSE), it aims to help make the test plot for large amount of data faster. If dilute = 5 will plot 1/5 of the data. If dilute = TRUE or a number, will plot at most half points per feature, so the plotting won't be too slow. If you put dilute too high, at least 10 points per feature would be kept. If the dataset is too small after dilution, will just plot all the data |
data("iris") X1 = as.matrix(iris[,-5]) mod1 = xgboost::xgboost( data = X1, label = iris$Species, gamma = 0, eta = 1, lambda = 0, nrounds = 1, verbose = FALSE) # shap.values(model, X_dataset) returns the SHAP # data matrix and ranked features by mean|SHAP| shap_values <- shap.values(xgb_model = mod1, X_train = X1) shap_values$mean_shap_score#> Petal.Length Petal.Width Sepal.Length Sepal.Width #> 0.62935975 0.21664035 0.02910357 0.00000000shap_values_iris <- shap_values$shap_score # shap.prep() returns the long-format SHAP data from either model or shap_long_iris <- shap.prep(xgb_model = mod1, X_train = X1) # is the same as: using given shap_contrib shap_long_iris <- shap.prep(shap_contrib = shap_values_iris, X_train = X1) # **SHAP summary plot** shap.plot.summary(shap_long_iris, scientific = TRUE)# Alternatives options to make the same plot: # option 1: from the xgboost model shap.plot.summary.wrap1(mod1, X = as.matrix(iris[,-5]), top_n = 3)# option 2: supply a self-made SHAP values dataset # (e.g. sometimes as output from cross-validation) shap.plot.summary.wrap2(shap_score = shap_values_iris, X = X1, top_n = 3)