
Package index
-
dataXY_df - Terra satellite data (X,Y) for running the xgboost model .
-
label.feature() - Modify labels for features under plotting
-
labels_within_package - labels_within_package: Some labels package auther defined to make his plot, mainly serve the paper publication.
-
new_labels - new_labels: a place holder default to NULL.
-
plot(<label>) - Internal-function to revise axis label for each feature
-
scatter.plot.diagonal() - Make customized scatter plot with diagonal line and R2 printed.
-
scatter.plot.simple() - Simple scatter plot, adding marginal histogram by default.
-
shap.importance() - Variable importance as measured by mean absolute SHAP value.
-
shap.plot.dependence() - SHAP dependence and interaction plots
-
shap.plot.force_plot() - Create SHAP force plot (stacked bar chart)
-
shap.plot.force_plot_bygroup() - Create faceted SHAP force plots by cluster
-
shap.plot.summary() - SHAP summary plot using long-format SHAP values
-
shap.plot.summary.wrap1() - A wrapped function to make summary plot from model object and predictors
-
shap.plot.summary.wrap2() - A wrapped function to make summary plot from given SHAP values matrix
-
shap.prep.interaction() - Prepare the interaction SHAP values from predict.xgb.Booster
-
shap.prep() - Prepare SHAP values into long format for plotting
-
shap.prep.stack.data() - Prepare data for SHAP force plot (stacked bar chart)
-
shap.values() - Get SHAP scores from a trained XGBoost or LightGBM model
-
shap_int_iris - The interaction effect SHAP values example using iris dataset.
-
shap_long_iris - The long-format SHAP values example using iris dataset.
-
shap_score - SHAP values example from dataXY_df .
-
shap_values_iris - SHAP values example using iris dataset.